Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Int. j. morphol ; 41(1): 45-50, feb. 2023.
Article in English | LILACS | ID: biblio-1430521

ABSTRACT

SUMMARY: Neuropeptide calcitonin gene-related peptide (CGRP) is a neurotransmitter related to vasculogenesis during organ development. The vascular endothelial growth factor A (VEGF-A) is also required for vascular patterning during lung morphogenesis. CGRP is primarily found in organs and initially appears in pulmonary neuroendocrine cells during the early embryonic stage of lung development. However, the relationship between CGRP and VEGF-A during lung formation remains unclear. This study investigates CGRP and VEGF-A mRNA expressions in the embryonic, pseudoglandular, canalicular, saccular, and alveolar stages of lung development from embryonic day 12.5 (E12.5) to postnatal day 5 (P5) through quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Further, we analyzed the expression of CGRP via immunohistochemistry. The VEGF-A mRNA was mainly scattered across the whole lung body from E12.5. CGRP was found to be expressed in a few epithelial cells of the canalicular and the respiratory bronchiole of the lung from E12.5 to P5. An antisense probe for CGRP mRNA was strongly detected in the lung from E14.5 to E17.5. Endogenous CGRP may regulate the development of the embryonic alveoli from E14.5 to E17.5 in a temporal manner.


El péptido relacionado con el gen de la calcitonina (CGRP) es un neurotransmisor vinculado con la vasculogénesis durante el desarrollo de órganos. El factor de crecimiento endotelial vascular A (VEGF-A) también se requiere para el patrón vascular durante la morfogénesis pulmonar. El CGRP se encuentra principalmente en los órganos y aparece inicialmente en las células neuroendocrinas pulmonares durante la etapa embrionaria temprana del desarrollo pulmonar. Sin embargo, la relación entre CGRP y VEGF-A durante la formación de los pulmones sigue sin estar clara. Este estudio investiga las expresiones de ARNm de CGRP y VEGF-A en las etapas embrionaria, pseudoglandular, canalicular, sacular y alveolar del desarrollo pulmonar desde el día embrionario 12,5 (E12,5) hasta el día postnatal 5 (P5) a través de la reacción en cadena de la polimerasa cuantitativa en tiempo real. (qRT-PCR) e hibridación in situ. Además, analizamos la expresión de CGRP mediante inmunohistoquímica. El ARNm de VEGF-A se dispersó principalmente por todo parénquima pulmonar desde E12,5. Se encontró que CGRP se expresaba en unas pocas células epiteliales de los bronquiolos canaliculares y respiratorios del pulmón desde E12,5 a P5. Se detectó fuertemente una sonda antisentido para ARNm de CGRP en el pulmón de E14,5 a E17,5. El CGRP endógeno puede regular el desarrollo de los alvéolos embrionarios de E14,5 a E17,5 de manera temporal.


Subject(s)
Animals , Mice , Calcitonin Gene-Related Peptide/metabolism , Vascular Endothelial Growth Factor A/metabolism , Lung/growth & development , Lung/embryology , Immunohistochemistry , In Situ Hybridization , Neurotransmitter Agents , Neovascularization, Physiologic
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 172-184, 2023.
Article in English | WPRIM | ID: wpr-971676

ABSTRACT

Mesenchymal stem cell (MSC)-derived exosomes (Exos) were reported to a prospective candidate in accelerating diabetic wound healing due to their pro-angiogenic effect. MSCs pretreated with chemistry or biology factors were reported to advance the biological activities of MSC-derived exosomes. Hence, this study was designed to explore whether exosomes derived from human umbilical cord MSCs (hucMSCs) preconditioned with Nocardia rubra cell wall skeleton (Nr-CWS) exhibited superior proangiogenic effect on diabetic wound repair and its underlying molecular mechanisms. The results showed that Nr-CWS-Exos facilitated the proliferation, migration and tube formation of endothelial cells in vitro. In vivo, Nr-CWS-Exos exerted great effect on advancing wound healing by facilitating the angiogenesis of wound tissues compared with Exos. Furthermore, the expression of circIARS1 increased after HUVECs were treated with Nr-CWS-Exos. CircIARS1 promoted the pro-angiogenic effects of Nr-CWS-Exos on endothelial cellsvia the miR-4782-5p/VEGFA axis. Taken together, those data reveal that exosomes derived from Nr-CWS-pretreated MSCs might serve as an underlying strategy for diabetic wound treatment through advancing the biological function of endothelial cells via the circIARS1/miR-4782-5p/VEGFA axis.


Subject(s)
Humans , Endothelial Cells/metabolism , Exosomes/metabolism , Cell Wall Skeleton/metabolism , Neovascularization, Physiologic , Wound Healing/physiology , MicroRNAs/metabolism , Diabetes Mellitus , Vascular Endothelial Growth Factor A/metabolism
3.
Chinese journal of integrative medicine ; (12): 137-145, 2023.
Article in English | WPRIM | ID: wpr-971340

ABSTRACT

OBJECTIVE@#To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.@*METHODS@#The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.@*RESULTS@#The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.@*CONCLUSION@#KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.


Subject(s)
Animals , Fibroblast Growth Factor 2 , Human Umbilical Vein Endothelial Cells , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish
4.
Chinese Journal of Biotechnology ; (12): 275-285, 2023.
Article in Chinese | WPRIM | ID: wpr-970374

ABSTRACT

The aim of this study was to investigate the therapeutic effects and potential mechanism of c(RGDyK) peptide modified mesenchymal stem cell exosomes loaded with ginsenoside Rg1 (G-Rg1) on ischemic stroke. Thread-tying method was used to establish SD rats transient middle cerebral occlusion model (tMCAO). The model rats were randomly divided into tMCAO group, Exo group, free G-Rg1 group, Exo-Rg1 group and cRGD-Exo-Rg1 group, and sham group was used as control. The infarct volume was measured by 2, 3, 5-triphenyltetrachloride (TTC) staining, the changes of neuron and endothelium were observed by immunofluorescence, and the expression of related proteins was detected by Western blotting. The results showed that cRGD-Exo-Rg1 up-regulated the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIF-1α) by activating PI3K/AKT pathway, thus promoting angiogenesis and neurogenesis, effectively reducing the volume of cerebral infarction and improving neural function. In addition, the delivery of cRGD-Exo-Rg1 to ischemic brain tissue up-regulated the expression of occludin and claudin-5, and reduced the injury of blood-brain barrier. Taken together, cRGD-Exo-Rg1 was effective in the treatment of ischemic stroke by promoting angiogenesis and neurogenesis, which provided experimental evidence for the potential clinical benefits of other neuroprotective therapies.


Subject(s)
Rats , Animals , Ischemic Stroke/drug therapy , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases , Vascular Endothelial Growth Factor A/metabolism , Exosomes/metabolism , Ginsenosides/therapeutic use
5.
Chinese Journal of Cellular and Molecular Immunology ; (12): 404-409, 2023.
Article in Chinese | WPRIM | ID: wpr-981880

ABSTRACT

Objective To investigate the ameliorative effect of salidroside on diabetes retinopathy (DR) rats and its mechanism. Methods Male SD rats were randomly divided into blank group, model group, low-dose and high-dose salidroside treatment groups. Except for the blank group, other groups were modeled by intraperitoneal injection of streptozotocin. After successful modeling, treatment groups were injected intraperitoneally with [50 mg/(kg.d)] and [100 mg/(kg.d)] salidroside respectively, for 4 weeks; the blank group and model group were injected with corresponding doses of saline. ELISA was used to measure the expression levels of antioxidant-related enzyme activity and inflammatory factors in blood glucose and serum of rats in each group. Retinal tissue lesions were detected by HE staining, and the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in retinal tissues were detected by immunohistochemical staining. Western blot analysis was used to detect the expression of phosphatidylinositol 3 kinase (PI3K) , nuclear factor κB p65 (NF-κB p65), phosphorylated p38 MAPK (p-p38 MAPK), and phosphorylated protein kinase B (p-AKT) proteins. Results Compared with model group, salidroside could significantly reduce blood glucose level and increase body mass in DR rats. The serum levels of superoxide dismutase (SOD) and catalase (CAT) were significantly increased, while the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-1β were reduced. The protein expression of VEGF, ICAM-1, NF-κB p65 and p-p38 MAPK was significantly decreased, while the protein expression of PI3K and p-AKT was increased. Conclusion Salidroside can reduce DR in rats by inhibiting oxidative stress and immune inflammatory response, which may be related to the reduction of abnormal expression of VEGF and ICAM-1 and the activation of PI3K/AKT signaling pathway.


Subject(s)
Animals , Male , Rats , Blood Glucose , Diabetes Mellitus , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Retinal Diseases , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
China Journal of Chinese Materia Medica ; (24): 3546-3555, 2023.
Article in Chinese | WPRIM | ID: wpr-981486

ABSTRACT

The purpose of this study was to explore the effect and mechanism of Xihuang Pills on rats with precancerous lesions of the breast. Of 48 healthy female rats, 8 were randomly selected as blank group, and the other 40 were treated with 7,12-dimethylbenzanthracene(DMBA) combined with estrogen and progestin to establish a model of precancerous lesions of the breast. The successfully modeled rats were randomly divided into a model group, a tamoxifen group(1.8 mg·kg~(-1)·d~(-1)), a Xihuang Pills low-dose group(0.3 g·kg~(-1)·d~(-1)), a medium-dose group(0.6 g·kg~(-1)·d~(-1)) and a high-dose group(1.2 g·kg~(-1)·d~(-1)). After 30 days of admi-nistration, the histopathological changes of viscera and breast were observed by haematoxylin and eosin(HE) staining, and the visceral index was calculated. Enzyme linked immunosorbent assay(ELISA) was used to detect the contents of estradiol(E_2) and progesterone(P) in serum. The protein expressions of vascular endothelial growth factor(VEGF) and fibroblast growth factor 2(FGF2) were detected by immunohistochemistry. The protein expressions of VEGF, vascular endothelial growth factor receptor 2(VEGFR2), phosphorylated-vascular endothelial growth factor receptor 2(p-VEGFR2), B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were detected by Western blot and the mRNA expressions of VEGF, FGF2, CXC-chemokine receptor 4(CXCR4), cysteine aspartic acid-specific protease(caspase-3), and stromal cell-derived factor 1(SDF-1) were detected by real-time polymerase chain reaction(RT-PCR). HE staining revealed that the model group had some liver and kidney damages and severe hyperplastic mammary tissue, while the Xihuang Pills high-dose group had mild hyperplasia. Compared with the model group, the Xihuang Pills groups had lo-wer ovarian coefficient(P<0.05 or P<0.01) and Xihuang Pills high-dose group had lower uterine coefficient(P<0.01). ELISA results showed that compared with the model group, expressions of E_2 and P in Xihuang Pills high-dose group were significantly decreased(P<0.05 or P<0.01). Immunohistochemistry, Western blot and RT-PCR indicated that compared with the conditions in the model group, the protein and mRNA expressions of VEGF and FGF2 in the Xihuang Pills groups were down-regulated(P<0.05 or P<0.01), and the protein expression of Bcl-2 was lowered(P<0.01); there was a decrease in the protein expressions of VEGFR2 and p-VEGFR2(P<0.01), a down-regulation in the mRNA expressions of CXCR4 and SDF-1(P<0.01), while an increase in the mRNA expression of caspase-3(P<0.01) in both Xihuang Pills medium-dose and high-dose groups; the protein expression of Bax in Xihuang Pills high-dose group was increased(P<0.01). The above results indicated that Xihuang Pills can effectively intervene in precance-rous lesions of the breast, and the mechanism may be related to the regulation of E_2 and P secretion as well as the inhibition of angiogenesis and chemokine receptor expression, thus controlling the occurrence of precancerous lesions of the breast in rats.


Subject(s)
Rats , Female , Animals , Rats, Sprague-Dawley , bcl-2-Associated X Protein , Vascular Endothelial Growth Factor A/metabolism , Caspase 3 , Vascular Endothelial Growth Factor Receptor-2 , Fibroblast Growth Factor 2 , Proto-Oncogene Proteins c-bcl-2 , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Precancerous Conditions , Hyperplasia , Receptors, Chemokine , RNA, Messenger
7.
China Journal of Chinese Materia Medica ; (24): 1760-1769, 2023.
Article in Chinese | WPRIM | ID: wpr-981393

ABSTRACT

The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.


Subject(s)
Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cholesterol, LDL , Rats, Sprague-Dawley , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Body Weight , Mammals
8.
China Journal of Chinese Materia Medica ; (24): 1731-1738, 2023.
Article in Chinese | WPRIM | ID: wpr-981390

ABSTRACT

Diabetic ulcer(DU) is one of the common complications of diabetes often occurring in the peripheral blood vessels of lower limbs or feet with a certain degree of damage. It has high morbidity and mortality, a long treatment cycle, and high cost. DU is often clinically manifested as skin ulcers or infections in the lower limbs or feet. In severe cases, it can ulcerate to the surface of tendons, bones or joint capsules, and even bone marrow. Without timely and correct treatment, most of the patients will have ulceration and blackening of the extremities. These patients will not be able to preserve the affected limbs through conservative treatment, and amputation must be performed. The etiology and pathogenesis of DU patients with the above condition are complex, which involves blood circulation interruption of DU wound, poor nutrition supply, and failure in discharge of metabolic waste. Relevant studies have also confirmed that promoting DU wound angiogenesis and restoring blood supply can effectively delay the occurrence and development of wound ulcers and provide nutritional support for wound healing, which is of great significance in the treatment of DU. There are many factors related to angiogenesis, including pro-angiogenic factors and anti-angiogenic factors. The dynamic balance between them plays a key role in angiogenesis. Meanwhile, previous studies have also confirmed that traditional Chinese medicine can enhance pro-angiogenic factors and down-regulate anti-angiogenic factors to promote angiogenesis. In addition, many experts and scholars have proposed that traditional Chinese medicine regulation of DU wound angiogenesis in the treatment of DU has broad prospects. Therefore, by consulting a large number of studies available, this paper expounded on the role of angiogenesis in DU wound and summarized the research advance in traditional Chinese medicine intervention in promoting the expression of angiogenic factors [vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), and angiopoietin(Ang)] which played a major role in promoting wound angiogenesis in the treatment of DU to provide ideas for further research and new methods for clinical treatment of DU.


Subject(s)
Humans , Medicine, Chinese Traditional , Ulcer , Vascular Endothelial Growth Factor A/metabolism , Diabetes Complications/drug therapy , Wound Healing/physiology , Diabetes Mellitus
9.
Journal of Central South University(Medical Sciences) ; (12): 1629-1636, 2022.
Article in English | WPRIM | ID: wpr-971345

ABSTRACT

OBJECTIVES@#Fluorouracil chemotherapeutic drugs are the classic treatment drugs of gastric cancer. But the problem of drug resistance severely limits their clinical application. This study aims to investigate whether hypoxia microenvironment affects gastric cancer resistance to 5-fluorouracil (5-FU) and discuss the changes of gene and proteins directly related to drug resistance under hypoxia condition.@*METHODS@#Gastric cancer cells were treated with 5-FU in hypoxia/normoxic environment, and were divided into a Normoxic+5-FU group and a Hypoxia+5-FU group. The apoptosis assay was conducted by flow cytometry Annexin V/PI double staining. The real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the expression level of hypoxia inducible factor-1α (HIF-1α), multidrug resistance (MDR1) gene, P-glycoprotein (P-gp), and vascular endothelial growth factor (VEGF) which were related to 5-FU drug-resistance. We analyzed the effect of hypoxia on the treatment of gastric cancer with 5-FU.@*RESULTS@#Compared with the Normoxic+5-FU group, the apoptosis of gastric cancer cells treated with 5-FU in the Hypoxia+5-FU group was significantly reduced (P<0.05), and the expression of apoptosis promoter protein caspase 8 was also decreased. Compared with the the Normoxic+5-FU group, HIF-1α mRNA expression in the Hypoxia+5-FU group was significantly increased (P<0.05), and the mRNA and protein expression levels of MDR1, P-gp and VEGF were also significantly increased (all P<0.05). The increased expression of MDR1, P-gp and VEGF had the same trend with the expression of HIF-1α.@*CONCLUSIONS@#Hypoxia is a direct influencing factor in gastric cancer resistance to 5-FU chemotherapy. Improvement of the local hypoxia microenvironment of gastric cancer may be a new idea for overcoming the resistance to 5-FU in gastric cancer.


Subject(s)
Humans , Fluorouracil/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Stomach Neoplasms/drug therapy , Drug Resistance, Multiple , Vascular Endothelial Growth Factors/metabolism , Hypoxia , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cell Line, Tumor , Cell Hypoxia , RNA, Messenger/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Tumor Microenvironment
10.
Chinese Journal of Lung Cancer ; (12): 291-294, 2022.
Article in Chinese | WPRIM | ID: wpr-928811

ABSTRACT

Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented.
.


Subject(s)
Humans , Angiogenesis Inhibitors/pharmacology , Bevacizumab/therapeutic use , Brain/metabolism , Consensus , Lung Neoplasms/drug therapy , Necrosis/etiology , Radiation Injuries/etiology , Vascular Endothelial Growth Factor A/metabolism
11.
China Journal of Chinese Materia Medica ; (24): 2064-2073, 2022.
Article in Chinese | WPRIM | ID: wpr-928146

ABSTRACT

To study the protective effect of Ershiwuwei Zhenzhu Pills on ischemic stroke rats. Ninety 4-weeks-old SPF male SD rats were randomly divided into 6 groups(n=15):sham operation group, model group, nimodipine group(12 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills high-dose group(400 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills medium-dose group(200 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills low-dose group(100 mg·kg~(-1)).The permanent middle cerebral artery occlusion model(PMCAO) was established in the model group, nimodipine group, and Ershiwuwei Zhenzhu Pills groups by the improved thread plug method, while the sham operation group did not insert the thread plug.Nimodipine group and Ershiwuwei Zhenzhu Pills groups were given intragastric administration once a day for 24 days before the modeling operation, and once 1 hour before the modeling operation, while sham operation group and model group were given equal volumes of distilled water.The neuroethology of the surviving rats was measured; The volume of cerebral infarction in rats was measured by TTC method; The histopathology of rat brain was observed by HE method; The expression levels of tumor necrosis factor α(TNF-α),interleukin-1β(IL-1β),interleukin-6(IL-6),malondialdehyde(MDA),superoxide dismutase(SOD) and catalase(CAT) in serum were detected by ELISA;The mRNA expressions of Notch 1,Jagged 1,Hes 1 and Bcl-2 in rat brain were detected by RT-PCR;Western blot was used to detect the expression levels of caspase-3 protein in rat brain; the expression levels of vascular endothelial growth factor(VEGF) and CD34 positive cells in rat brain were detected by immunofluorescence.The low, medium and high dose groups of Ershiwuwei Zhenzhu Pills and nimodipine group could significantly reduce the neurobehavioral score and cerebral infarction volume of rats with permanent middle cerebral artery occlusion, reduce the morphological changes of nerve cells, decrease the expression of TNF-α,IL-1β and IL-6 in rat serum, increase the activity of SOD and CAT,and reduce the level of MDA.Furthermore, the expression levels of Notch l, Jagged l, Hes l and Bcl-2 mRNA were significantly increased, and the expression level of caspase-3 protein was decreased.Meanwhile, the number of VEGF and CD34 positive cells increased in the treatment group.The differences were statistically significant. Ershiwuwei Zhenzhu Pills has a protective effect on ischemic stroke rats, and its mechanism may be related to anti-inflammation, anti-oxidation, promotion of nerve cell proliferation, inhibition nerve cell apoptosis and promotion of angiogenesis.


Subject(s)
Animals , Male , Rats , Caspase 3/metabolism , Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Interleukin-6/metabolism , Ischemic Stroke/drug therapy , Nimodipine/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
China Journal of Chinese Materia Medica ; (24): 1625-1631, 2022.
Article in Chinese | WPRIM | ID: wpr-928102

ABSTRACT

This study aimed to observe the intervention effect of Jianpi Huogu Formula(JPHGF) on the functional damage of vascular endothelial cells caused by glucocorticoid, and explore its action mechanism from the PI3 K/Akt and mitogen activated protein kinase(MAPK) signaling pathways. The extracted thoracic aorta ring of normal SD rats were intervened first with vascularendothelial growth factor(VEGF, 20 μg·L-1) and/or sodium succinate(MPS, 0. 04 g·L-1) in vitro and then with JPHGF(8, 16, and 32 μg·L-1) for five mcontinuous ethylpdays, rednisolofollowed nebythe statistics of the number, length, and area of microvessels budding fromvascular rings. In addition, the human umbilical vein endothelial cells(HUVECs) induced by VEGF(20 μg·L-1) were added with MPS(0. 04 g·L-1) and then with JPHGF(8, 16, and 32 μg·L-1) for observing the migration, invasion, and luminal formation abilities of HUVECs in the migration, invasion and luminal formation experiments. The protein expression levels of PI3 K, p-Akt, p-JN K, and p-ERK in HUVECs were assayed by Western blot. The results showed that JPHGF dose-dependently improved the num-ber,length, and area of microvessels in MPS-induced rat thoracic aortic ring, reversed the migration, invasion and lumen formation abiliti es of HUVECs reduced by MPS, and up-regulated the protein expression levels of PI3 K, p-Akt, and p-JNK in HUVECs. All thesehave suggested that JPHGF exerts the protective effect against hormone-induced damage to the angiogenesis of vascular endothelial cells by activating the PI3 K/Akt and MAPK signaling pathways, which has provided reference for exploring the mechanism of JPHGF in treating s teroid-induced avascular necrosis of femoral head(SANFH) and also the experimental evidence for enriching the scientific connotationof spleen-invigorating and blood-activating therapy.


Subject(s)
Animals , Humans , Rats , Glucocorticoids/pharmacology , Human Umbilical Vein Endothelial Cells , Neovascularization, Pathologic/metabolism , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
13.
China Journal of Chinese Materia Medica ; (24): 737-744, 2022.
Article in Chinese | WPRIM | ID: wpr-927957

ABSTRACT

The present study investigated the mechanism of components in stasis-resolving and collateral-dredging Chinese herbal medicines, including scutellarin(Scu), paeonol(Pae), and hydroxy safflower yellow A(HSYA), in the treatment of psoriasis by regulating angiogenesis and inflammation. The human umbilical vein endothelial cells(HUVECs) cultured in vitro were divided into a normal group, a model group, a VEGFR tyrosine kinase inhibitor Ⅱ(VRI) group, and Scu, Pae, and HSYA groups with low, me-dium, and high doses. Cell viability was detected by the CCK-8 assay. Cell migration was detected by wound healing assay. Tube formation assay was used to measure the tube formation ability. Western blot was used to detect the protein expression of the VEGFR2/Akt/ERK1/2 signaling pathway. The secretion levels of inflammatory cytokines IFN-γ, IL-1β, IL-6, and TNF-α were detected by ELISA. The results showed that compared with the model group, all the Scu, Pae, and HSYA groups could reduce cell viability, inhibit cell migration and tube formation(P<0.05, P<0.01), and down-regulated the protein expression of VEGFR2, p-VEGFR2, Akt, p-Akt, ERK1/2, and p-ERK1/2. Scu and Pae could down-regulate VEGFR2 expression(P<0.05, P<0.01), while other groups only showed a downward trend. Scu and Pae significantly reduced IFN-γ and IL-6 levels(P<0.01), and HSYA significantly reduced the levels of IFN-γ, IL-1β, and IL-6(P<0.01). Scu, Pae, and HSYA had no significant effect on TNF-α. The results suggested that Scu, Pae, and HSYA may exert a therapeutic role in psoriasis-related angiogenesis and inflammation by inhibiting VEGFR2/Akt/ERK1/2 signaling pathway and inhibiting the secretion of IFN-γ, IL-1β, and IL-6.


Subject(s)
Humans , Angiogenesis Inhibitors/pharmacology , China , Human Umbilical Vein Endothelial Cells , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism
14.
Acta Academiae Medicinae Sinicae ; (6): 164-172, 2022.
Article in Chinese | WPRIM | ID: wpr-927861

ABSTRACT

Mechanical stimulus is critical to cardiovascular development during embryogenesis period.The mechanoreceptors of endocardial cells and cardiac myocytes may sense mechanical signals and initiate signal transduction that induce gene expression at a cellular level,and then translate molecular-level events into tissue-level deformations,thus guiding embryo development.This review summarizes the regulatory roles of mechanical signals in the early cardiac development including the formation of heart tube,looping,valve and septal morphogenesis,ventricular development and maturation.Further,we discuss the potential mechanical transduction mechanisms of platelet endothelial cell adhesion molecule 1-vascular endothelial-cadherin-vascular endothelial growth factor receptor 2 complex,primary cilia,ion channels,and other mechanical sensors that affect some cardiac malformations.


Subject(s)
Animals , Humans , Heart/embryology , Mechanotransduction, Cellular , Myocytes, Cardiac/physiology , Vascular Endothelial Growth Factor A/metabolism
15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 229-240, 2022.
Article in English | WPRIM | ID: wpr-929256

ABSTRACT

Angiogenesis inhibitors targeting the VEGF signaling pathway are developed into drugs for the treatment of vaious diseases, such as cancer, rheumatoid arthritis, and age-related macular degeneration. Recent studies have revealed that oleanolic acid (OA), a natural pentacyclic triterpenoid, inhibited the VEGF/VEGFR2 signaling pathway and angiogenesis in HUVECs, which may represent an attractive VEGF inhibitor. In this paper, rational structural modification towards OA was performed in order to improve its inhibitory effects aganist VEGF and anti-angiogenesis potential. As a result, a series of novel OA derivatives, possessing α,β-unsaturated ketone system in ring A and amide functional group at C-28, were prepared and evaluated for cytotoxicity and their ability to inhibit VEGF-induced abnormal proliferation of HUVECs. The results showed that two promising derivatives, OA-1 and OA-16, exhibited no in vitro cytotoxicity against HUVECs but showed more potent inhibitory activity against VEGF-induced proliferation and angiogenesis in HUVECs, compared with OA. The results of Western blot indicated that OA-1 and OA-16 inhibited VEGF-induced VEGFR2 activation. Furthermore, small interfering RNA experiments were performed to confirm that both compounds inhibited VEGF-induced angiogenesis via VEGFR2. Thus, the present study resulted in the discovery of new promising OA-inspired VEGF inhibitors, which can serve as potential lead compounds for the treatment of angiogenesis-related diseases.


Subject(s)
Humans , Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Oleanolic Acid/pharmacology , Vascular Endothelial Growth Factor A/metabolism
16.
Chinese Journal of Oncology ; (12): 523-530, 2022.
Article in Chinese | WPRIM | ID: wpr-939491

ABSTRACT

Breast cancer is the most common cancer in the world, and 5-year survival rate of metastatic breast cancer is about 20%. The treatment of metastatic breast cancer is mainly chemotherapy, endocrine therapy and targeted therapy. However, after multiline treatment, patients with MBC especially the triple negative breast cancer face the problem of drug resistance. Tumor angiogenesis theory suggests that blocking angiogenesis can inhibit tumor growth and migration. Based on this, angiogenesis treatment strategy is proposed. Antiangiogenic drugs mainly include biological macromolecular drugs targeting vascular endothelial growth factor (VEGF) or vascular endothelial growth factor receptor (VEGFR) and small molecule VEGFR inhibitors. Angiogenesis is known to play a key role in the growth and metastasis of breast cancer. Therefore, anti-angiogenetic therapy has potential in metastatic breast cancer patients. Since the approval of tumor drug indications by NPMA in China is often later than the release of the latest research data, the National Health Commission issued "the guiding principles for the clinical application of new antitumor drugs" in 2020. The principle pointed out that under special circumstances such as the absence of better treatment, medical institutions should manage the usage of drugs that are not clearly defined in the instructions but have evidence-based data. Based on the latest research progress in breast cancer, the consensus writing expert group collated published reports, international academic conferences, conducted analysis, discussion and summary, collected data on the use of small molecule anti-vascular targeting drugs for advanced breast cancer, and formulated "expert consensus on the application of small molecule anti-angiogenic drugs in the treatment of advanced breast cancer" . For clinicians' reference only.


Subject(s)
Female , Humans , Angiogenesis Inhibitors/therapeutic use , Breast Neoplasms/pathology , Consensus , Neovascularization, Pathologic/pathology , Off-Label Use , Vascular Endothelial Growth Factor A/metabolism
17.
Journal of Southern Medical University ; (12): 463-472, 2022.
Article in Chinese | WPRIM | ID: wpr-936338

ABSTRACT

OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.


Subject(s)
Animals , Rats , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolism
18.
Arq. bras. cardiol ; 117(3): 476-483, Sept. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1339188

ABSTRACT

Resumo Fundamento: A doença cardiovascular é a principal causa de morte em todo o mundo. A apoptose mediada por hipóxia em cardiomiócitos é uma das principais causas de distúrbios cardiovasculares. O tratamento com a proteína do fator de crescimento endotelial vascular (VEGF, do inglês vascular endothelial growth factor) foi testado, mas as dificuldades operacionais limitaram seu uso. Entretanto, com os avanços da terapia gênica, aumentou o interesse na terapia gênica baseada no VEGF em doenças cardiovasculares. No entanto, o mecanismo preciso pelo qual a reposição de VEGF resgata os danos pós-hipóxia em cardiomiócitos não é conhecido. Objetivos: Investigar o efeito da expressão de VEGF121 pós-hipóxia utilizando cardiomiócitos de ratos neonatos. Métodos: Cardiomiócitos isolados de ratos neonatos foram utilizados para estabelecer um modelo in vitro de lesão cardíaca induzida por hipóxia. O efeito da superexpressão de VEGF, isolado ou em conjunto com inibidores de moléculas pequenas que têm como alvo os canais de cálcio, receptores sensíveis ao cálcio (CaSR, do inglês calcium-sensitive receptors) e calpaína, no crescimento e proliferação celular em lesão de cardiomiócitos induzidos por hipóxia, foram determinados com ensaio de MTT, coloração TUNEL, coloração com Anexina V/PI, lactato desidrogenase e atividade da caspase. Para análise estatística, um valor de p<0,05 foi considerado significativo. Resultados: Verificou-se que o efeito do VEGF121 foi mediado por CaSR e calpaína, mas não foi dependente dos canais de cálcio. Conclusões: Nossos resultados, mesmo em um ambiente in vitro, estabelecem as bases para uma validação futura e testes pré-clínicos da terapia gênica baseada em VEGF em doenças cardiovasculares.


Abstract Background: Cardiovascular disease is the major cause of death worldwide. Hypoxia-mediated apoptosis in cardiomyocytes is a major cause of cardiovascular disorders. Treatment with vascular endothelial growth factor (VEGF) protein has been tested but operational difficulties have limited its use. However, with the advancements of gene therapy, interest has risen in VEGF-based gene therapy in cardiovascular disorders. However, the precise mechanism by which VEGF replenishment rescues post-hypoxia damage in cardiomyocytes is not known. Objectives: To investigate the effect of post-hypoxia VEGF121 expression using neonatal rat cardiomyocytes. Methods: Cardiomyocytes isolated from neonatal rats were used to establish an in vitro model of hypoxia-induced cardiac injury. The effect of VEGF overexpression, alone or in combination with small-molecule inhibitors targeting calcium channel, calcium sensitive receptors (CaSR), and calpain on cell growth and proliferation on hypoxia-induced cardiomyocyte injury were determined using an MTT assay, TUNEL staining, Annexin V/PI staining, lactate dehydrogenase and caspase activity. For statistical analysis, a value of P<0.05 was considered to be significant. Results: The effect of VEGF121 was found to be mediated by CaSR and calpain but was not dependent on calcium channels. Conclusions: Our findings, even though using an in vitro setting, lay the foundation for future validation and pre-clinical testing of VEGF-based gene therapy in cardiovascular diseases.


Subject(s)
Animals , Rats , Vascular Endothelial Growth Factor A/metabolism , Receptors, Calcium-Sensing/metabolism , Peptide Hydrolases/metabolism , Myocytes, Cardiac/metabolism , Hypoxia , Mitochondria
19.
Int. j. morphol ; 39(2): 625-629, abr. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385346

ABSTRACT

SUMMARY: Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2, are known to regulate blood vessel endothelium growth. They play important role in human and rodents teeth development. In newt jaws, there are sequential developmental teeth germs following behind the mature teeth. We examined the immunohistochemical localization of VEGF and its receptor and showed the specific expression pattern of VEGF and VEGF receptor in Cynops pyrrhogaster sequential tooth development. The intensity of immunoreactivity for VEGF in the inner enamel epithelium was weaker than that in the outer enamel epithelium in the dentine matrix formation and mineralization stages. Finally, at the enameloid maturation and enamel-like matrix formation stage, immunoreactivity for VEGF in inner enamel epithelium was stronger than in the outer enamel epithelium. The intensity of immunoreactivity for VEGFR-2 was positive for the outer enamel epithelium throughout tooth development. The crown sides of the odontoblasts were stained especially strongly for VEGF and VEGFR-2 during the dentine matrix formation and mineralization stage of the enameloid maturation and enamel- like matrix formation stage. We postulate that the expression of VEGF in the inner enamel epithelium and odontoblast widely effects tooth development in newts, as well as in human and rodents.


RESUMEN: Se sabe que el factor de crecimiento endotelial vascular (VEGF) y su receptor, VEGFR-2, regulan el crecimiento del endotelio de los vasos sanguíneos. Desempeñan un papel importante en el desarrollo de los dientes humanos y de los roedores. En las mandíbulas de tritón, hay gérmenes dentales de desarrollo secuenciales que siguen a los dientes maduros. Examinamos la localización inmunohistoquímica de VEGF y su receptor y mostramos el patrón de expresión específico de VEGF y receptor de VEGF en el desarrollo secuencial de dientes de Cynops pyrrhogaster. La intensidad de la inmunorreactividad para VEGF en el epitelio interno del esmalte era más débil que en el epitelio externo del esmalte en las etapas de formación y mineralización de la matriz de dentina. Finalmente, en la etapa de maduración del esmalte y de formación de la matriz similar al esmalte, la inmunorreactividad para VEGF en el epitelio interno del esmalte fue más fuerte que en el epitelio externo del esmalte. La intensidad de la inmunorreactividad para VEGFR- 2 fue positiva para el epitelio externo del esmalte durante el desarrollo del diente. Los márgenes de la corona de los odontoblastos se tiñeron especialmente para VEGF y VEGFR-2 durante la etapa de formación de la matriz de dentina y mineralización de la etapa de maduración del esmalte y la etapa de formación de la matriz similar al esmalte. Postulamos que la expresión de VEGF en el epitelio interno del esmalte y odontoblastos afecta ampliamente el desarrollo de los dientes en tritones, así como en humanos y roedores.


Subject(s)
Animals , Salamandridae , Tooth Germ/metabolism , Vascular Endothelial Growth Factor A/metabolism , Immunohistochemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
Acta cir. bras ; 35(1): e202000103, 2020. tab, graf
Article in English | LILACS | ID: biblio-1088520

ABSTRACT

Abstract Purpose To investigate the protective effect of Ganoderma lucidum on testicular torsion/detorsion (T/D)-induced ischemia-reperfusion (I/R) injury. Methods Thirty male Wistar albino rats were randomly categorized into 3 groups: Group 1: sham, Group 2 ( T/D): 2,5 hours of ischemia and 7 days of reperfusion, Group 3 (T/D+ G. lucidum ): 2,5 hours of ischemia and 7 days of reperfusion and 7 days of 20 mg/kg via gastric gavage G. lucidum polysaccharides per day. Biochemical assays of Malondialdehyde (MDA), superoxide dismutase (SOD), Catalase (CAT), Glutathione (GSH) levels , histopathology and expression levels of VEGF and Bcl-2 with immunohistochemical methods were examined in testicular tissue. Results G. lucidum treatment was found to have prevented the T/D-induced I/R injury by decreasing MDA levels of the testis. SOD, CAT and GSH activities were decreased in group 2, while they were increased in group 3 (p<0.001) and significant improvement in the tube diameter was observed in group 3. Bcl-2-positive germinal cells were lowered in group 3 compared to the group 2. VEGF expression showed an increase in group 2, whereas it decreased in group 3. Conclusion The antioxidant G. lucidum is thought to induce angiogenesis by reducing the apoptotic effect in testicular torsion-detorsion.


Subject(s)
Animals , Male , Rats , Spermatic Cord Torsion/complications , Testis/blood supply , Reperfusion Injury/prevention & control , Reishi/chemistry , Antioxidants/therapeutic use , Spermatic Cord Torsion/metabolism , Superoxide Dismutase/metabolism , Testis/drug effects , Testis/pathology , Reperfusion Injury/etiology , Catalase/metabolism , Random Allocation , Rats, Wistar , Vascular Endothelial Growth Factor A/metabolism , Drug Evaluation, Preclinical , Malondialdehyde/metabolism , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL